4.4 Article

The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO)

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 27, 期 8, 页码 976-985

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcc.20406

关键词

fragment molecular orbital; FMO; polarizable continuum model; PCM; GAMESS; parallel; GDDI; protein

向作者/读者索取更多资源

The polarizable continuum model (PCM) for the description of solvent effects is combined with the fragment molecular orbital (FMO) method at several levels of theory, using a many-body expansion of the electron density and the corresponding electrostatic potential, thereby determining solute (FMO)-solvent (PCM) interactions. The resulting method, denoted FMO/PCM, is applied to a set of model systems, including a-helices and P-strands of alanine consisting of 10, 20, and 40 residues and their mutants to charged arginine and glutamate residues. The FMO/PCM error in reproducing the PCM solvation energy for a full system is found to be below 1 kcal/mol in all cases if a two-body expansion of the electron density is used in the PCM potential calculation and two residues are assigned to each fragment. The scaling of the FMO/PCM method is demonstrated to be nearly linear at all levels for polyalanine systems. A study of the relative stabilities of alpha-helices and beta-strands is performed, and the magnitude of the contributing factors is determined. The method is applied to three proteins consisting of 20, 129, and 245 residues. and the solvation energy and computational efficiency are discussed. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据