4.7 Article

A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and radar observations

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2005.863319

关键词

microwave remote sensing; observing system simulation experiment; radar measurements; soil moisture; spaceborne radiometry

向作者/读者索取更多资源

NASA's Earth System Science Pathfinder Hydrospheric States (Hydros) mission will provide the first global scale space-borne observations of Earth's soil moisture using both L-band microwave radiometer and radar technologies. In preparation for the Hydros mission, an observation system simulation experiment (OSSE) has been conducted. As a part of this OSSE, the potential for retrieving useful surface soil moisture at spatial resolutions of 9 and 3 km was explored. The approach involved optimally merging relatively accurate 36-km radiometer brightness temperature and relatively noisy 3-km radar backscatter cross section observations using a Bayesian method. Based on the Hydros OSSE data sets with low and high noises added to the simulated observations or model parameters, the Bayesian method performed better than direct inversion of either the brightness temperature or radar backscatter observations alone. The root-mean-square errors of 9-km soil moisture retrievals from the Bayesian merging method were reduced by 0.5 %vol/vol and 1.4 %vol/vol from the errors of direct radar inversions for the entire OSSE domain of all 34 consecutive days for the low and high noise data sets, respectively. Improvement in soil moisture estimates using the Bayesian merging method over the direct inversions of radar or radiometer data were even more significant for soil moisture retrieval at 3-km resolution. However, to address the representativeness of these results at the global and multiyear scales, further performance comparison studies are needed, particularly with actual field data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据