4.7 Article

A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana

期刊

PLANT AND CELL PHYSIOLOGY
卷 47, 期 6, 页码 772-783

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcj051

关键词

Arabidopsis; cellulose; 2,6-dichlorobenzonitrile; group II intron; mitochondria; sucrose synthase (SuSy)

向作者/读者索取更多资源

To elucidate the mechanism of cellulose synthesis, we isolated a mutant of Arabidopsis (changed sensitivity to cellulose synthesis inhibitors 1, css1) that showed changed sensitivity to cellulose biosynthesis inhibitor. The analysis of phenotypes indicated that the css1 mutation influenced various fundamental metabolic pathways including amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Unexpectedly, the map-based cloning of the gene responsible for the css1 mutation identified a protein (At-nMat1a) that was assumed to be a splicing factor of the mitochondrial group II intron. In accordance with this result, this mutant exhibited improper splicing of the mitochondrial NAD4 transcript. We noticed that the phenotypes of the css1 mutant are similar to the responses to anoxia that hinders mitochondrial aerobic respiration. It seems that the defect in the function of mitochondria influences various aspects of fundamental cellular metabolism including cellulose synthesis. Our results suggested that sucrose synthase (SuSy), an enzyme involved in the biosynthesis of cellulose, plays key roles in the connection between mitochondria and cellulose synthesis. The isolation of the css1 mutant also provides a useful resource in the study of post-transcriptional gene regulation in mitochondria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据