4.7 Article

Determination of minimum clamping forces for dynamically stable fixturing

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2005.07.040

关键词

fixture; machining; clamping optimization; dynamic stability

向作者/读者索取更多资源

This paper presents a model-based framework for determining the minimum required clamping forces that ensure the dynamic stability of a fixtured workpiece during machining. The framework consists of a dynamic model for simulating the vibratory behavior of the fixtured workpiece subjected to time- and space-varying machining loads, a geometric model for capturing the continuously changing geometry and inertia of the fixture-workpiece system during machining, a static model for determining the localized fixture-workpiece contact deformations due to clamping, a model for checking the dynamic stability of the fixtured workpiece, and a model for determining the optimal set of clamping forces that satisfies the stability criteria for a given machining operation. The clamping force optimization problem is formulated as a bilevel nonlinear programming problem and solved using the Particle Swarm Optimization (PSO) technique featuring computational intelligence. A simulation example solved using the developed approach reveals that the minimum required clamping forces for dynamically stable fixturing are significantly affected by the fixture-workpiece system dynamics and its continuous change during machining due to the material removal effect. (C) 2005 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据