4.2 Article

Large negative stress phase angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1824120

关键词

-

资金

  1. NHLBI NIH HHS [R01-HL35549] Funding Source: Medline

向作者/读者索取更多资源

Hemodynamics plays an important role in cardiovascular physiology and pathology. Pulsatile flow (Q), pressure (P), and diameter (D) waveforms exert wall shear stress (WSS), normal stress, and circumferential strain (CS) on blood vessels. Most in vitro studies to date have focused on either WSS or CS but not their interaction. Recently, we have shown that concomitant WSS and CS affect EC biochemical response modulated by the temporal phase angle between WSS and CS (stress phase angle, SPA). Large negative SPA has been shown to occur in regions of the circulation where atherosclerosis and intimal hyperplasia are prevalent. Here, we report that nitric oxide (NO) biochemical secretion was significantly decreased in response to a large negative SPA of -180 deg with respect to an SPA of 00 in bovine aortic endothelial cells (BAEC) at 5 h. A new hemodynamic simulator for the study of the physiologic SPA was used to provide the hemodynamic conditions of pro-atherogenic (SPA=-180 deg) and normopathic (SPA=0 deg) states. The role of complex hemodynamics in vascular remodeling, homeostasis, and pathogenesis can be advanced by further assessment of the hypothesis that a large negative SPA is pro-atherogenic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据