4.5 Article

Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence

期刊

MOLECULAR MICROBIOLOGY
卷 60, 期 5, 页码 1109-1122

出版社

WILEY
DOI: 10.1111/j.1365-2958.2006.05155.x

关键词

-

资金

  1. NIAID NIH HHS [AI046392] Funding Source: Medline

向作者/读者索取更多资源

Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The Delta prpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or Delta prpDC bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据