4.8 Article

Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp PCC 7942

期刊

PLANT PHYSIOLOGY
卷 141, 期 2, 页码 758-765

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.106.076976

关键词

-

向作者/读者索取更多资源

Glycinebetaine (hereafter referred to as betaine) is a compatible solute that accumulates in certain plants and microorganisms in response to various types of stress. We demonstrated previously that when the cyanobacterium Synechococcus sp. PCC 7942 (hereafter Synechococcus) is transformed with the codA gene for choline oxidase, it can synthesize betaine from exogenously supplied choline, exhibiting enhanced tolerance to salt and cold stress. In this study, we examined the effects of salt stress and betaine synthesis on the photoinhibition of photosystem II (PSII). Salt stress due to 220mM NaCl enhanced photoinhibition of PSII and betaine protected PSII against photoinhibition under these conditions. However, neither salt stress nor betaine synthesis affected photodamage to PSII. By contrast, salt stress inhibited repair of photodamaged PSII and betaine reversed this inhibitory effect of salt stress. Pulse-chase-labeling experiments revealed that salt stress inhibited degradation of D1 protein in photodamaged PSII and de novo synthesis of D1. By contrast, betaine protected the machinery required for degradation and synthesis of D1 under salt stress. Neither salt stress nor betaine affected levels of psbA transcripts. These observations suggest that betaine counteracts the inhibitory effects of salt stress, with resultant accelerated repair of photodamaged PSII.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据