4.6 Article

Compact self-wiring in cultured neural networks

期刊

JOURNAL OF NEURAL ENGINEERING
卷 3, 期 2, 页码 95-101

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/3/2/003

关键词

-

向作者/读者索取更多资源

We present a novel approach for patterning cultured neural networks in which a particular geometry is achieved via anchoring of cell clusters (tens of cells/each) at specific positions. In addition, compact connections among pairs of clusters occur spontaneously through a single non-adherent straight bundle composed of axons and dendrites. The anchors that stabilize the cell clusters are either poly-D-lysine, a strong adhesive substrate, or carbon nanotubes. Square, triangular and circular structures of connectivity were successfully realized. Monitoring the dynamics of the forming networks in real time revealed that the self-assembly process is mainly driven by the ability of the neuronal cell clusters to move away from each other while continuously stretching a neurite bundle in between. Using the presented technique, we achieved networks with wiring regions which are made exclusively of neuronal processes unbound to the surface. The resulted network patterns are very stable and can be maintained for as long as 11 weeks. The approach can be used to build advanced neuro-chips for bio-sensing applications (e.g. drug and toxin detection) where the structure, stability and reproducibility of the networks are of great relevance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据