4.7 Article

Robust locally linear embedding

期刊

PATTERN RECOGNITION
卷 39, 期 6, 页码 1053-1065

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.patcog.2005.07.011

关键词

nonlinear dimensionality reduction; manifold learning; locally linear embedding; principal component analysis; outlier; robust statistics; M-estimation; handwritten digit; wood texture

向作者/读者索取更多资源

In the past few years, some nonlinear dimensionality reduction (NLDR) or nonlinear manifold learning methods have aroused a great deal of interest in the machine learning community. These methods are promising in that they can automatically discover the low-dimensional nonlinear manifold in a high-dimensional data space and then embed the data points into a low-dimensional embedding space, using tractable linear algebraic techniques that are easy to implement and are not prone to local minima. Despite their appealing properties, these NLDR methods are not robust against outliers in the data, yet so far very little has been done to address the robustness problem. In this paper, we address this problem in the context of an NLDR method called locally linear embedding (LLE). Based on robust estimation techniques, we propose an approach to make LLE more robust. We refer to this approach as robust locally linear embedding (RLLE). We also present several specific methods for realizing this general RLLE approach. Experimental results on both synthetic and real-world data show that RLLE is very robust against outliers. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据