4.6 Article

Buckling of double-walled carbon nanotubes modeled by solid shell elements

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2202108

关键词

-

向作者/读者索取更多资源

A solid shell element model is proposed for the elastic bifurcation buckling analysis of double-walled carbon nanotubes (DWCNTs) under axial compression. The solid shell element allows for the effect of transverse shear deformation which becomes significant in a stocky DWCNT with relatively small radius-to-thickness ratio. The van der Waals (vdW) interaction between the adjacent walls is simulated by linear springs. Using this solid shell element model, the critical buckling strains of DWCNTs with various boundary conditions are obtained and compared with molecular dynamics results and those obtained by other existing shell and beam models. The results obtained show that the solid shell element is able to model DWCNTs rather well, with the appropriate choice of Young's modulus, tube thickness, and spring constant for modeling the vdW forces. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据