4.5 Article

Correlation between formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites determined by a comet assay, increased MDA, and decreased glutathione during long exposure to thinner inhalation

期刊

TOXICOLOGY LETTERS
卷 163, 期 3, 页码 198-205

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2005.10.021

关键词

comet assay; Fpg enzyme; oxidative DNA damage; thinner inhalation; glutathione; malondialdehyde

向作者/读者索取更多资源

Thinner inhalation causes toxic effects in a variety of organs, principally in the central nervous system. Some studies have shown oxidative stress effects of thinner inhalation, such as: activation of free radical processes, decrease of antioxidants, and oxidation products of proteins and lipids but not of DNA. The aim of this study is to investigate the effect of thinner inhalation on DNA. We used the comet assay in conjunction with the enzyme formamidopyrimidine glycoslyase (Fpg). Our results show a significant increase in Fpg-sensitive sites in DNA of lymphocytes from rats exposed to thinner fumes compared to lymphocytes from control rats (p < 0.05). Moreover, DNA damage detected with Fpg shows a high correlation with increased malondialdehyde (MDA) and decreased glutathione (GSH), two widely used biomarkers of oxidative stress. The most abundant base oxidation product found in DNA is 8-oxoguanine; it is the main substrate of Fpg and the most commonly used biomarker for oxidative DNA damage. This suggests that oxidative DNA damage is at least partly responsible for the DNA damage detected by Fpg. We propose the comet assay in combination with Fpg as a sensitive biomarker to monitor exposure to thinner inhalation. Limitations of this method are discussed. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据