4.0 Article

Effect of seeding and bioreactor culture conditions on the development of human tissue-engineered cartilage

期刊

TISSUE ENGINEERING
卷 12, 期 6, 页码 1675-1685

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/ten.2006.12.1675

关键词

-

向作者/读者索取更多资源

Human cartilage was produced using fetal chondrocytes seeded into polyglycolic acid (PGA) mesh scaffolds and cultured in recirculation bioreactors. The effect of scaffold thickness, seeding cell density, and bioreactor operating conditions on the quality of the engineered cartilage was investigated. Thin (2.15-mm-thick) PGA scaffolds lost their structural integrity during bioreactor culture and the resulting constructs were small and misshapen compared with tissues generated using 4.75-mm-thick scaffolds. Increasing the seeding cell number from 1.2 x 10(7) to 2.2 x 10(7) per 4.75-mm-thick scaffold resulted in a doubling of the construct wet weight, a 4.4-fold increase in glycosaminoglycan (GAG) concentration, and a 2.9-fold increase in total collagen concentration in the tissues. Levels of GAG and total collagen were also improved significantly when 100 mL or 50% v/v of the culture medium was replaced periodically during operation of the bioreactors compared with 50, 25, or 5 mL. The proportion of GAG lost from the tissues into the medium was reduced by increasing the seeding cell number and replaced medium volume. This work demonstrates that the quality of tissue-engineered cartilage can be manipulated substantially depending on the cell seeding and bioreactor culture conditions employed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据