3.8 Article

Immobilization of gene vectors on polyurethane surfaces using a monoclonal antibody for localized gene delivery

期刊

JOURNAL OF GENE MEDICINE
卷 8, 期 6, 页码 690-698

出版社

WILEY
DOI: 10.1002/jgm.912

关键词

polyurethane (PU); film; anti-adenoviral monoclonal antibodies; adenovirus; localized gene delivery

资金

  1. NHLBI NIH HHS [HL72108] Funding Source: Medline

向作者/读者索取更多资源

Background Conventional strategies of gene therapy using viral vectors result in suboptimal localization and potentially dangerous distal spread of vector. We hypothesized that localized delivery of adenoviral gene vectors could be achieved from a polyurethane (PU) film through a mechanism involving anti-viral antibody tethering. Methods PU films were formulated with a collagen coating. Anti-adenoviral monoclonal antibodies were covalently bound to the collagen surface. These antibodies enabled tethering of replication-defective adenoviruses [Ad-GFP (encoding green fluorescent protein)] through highly specific antigen-antibody affinity. The binding stability and in vitro delivery of virus bound on PU films were investigated. Cell culture studies with rat arterial smooth muscle cells (A10) assessed transduction on or near the PU matrix. In vivo experiments with collagen-coated PU films investigated atrial epicardial implant and subdermal implant models in Yorkshire swine. Results We report for the first time successful PU film-based gene delivery using antibody-tethered adenovirus encoding the green fluorescent protein (GFP), demonstrating efficient and highly localized gene delivery to arterial smooth muscle cells in cell culture and pig implant. In comparison, direct injections of viral vectors into subcutaneous sites gave sparse, needle-track-oriented GFP expression patterns. Conclusion We conclude that PU film is a suitable platform for a localizable viral vector delivery system that also prevents systemic spread of vector. Gene delivery using PU film-based anti-viral antibody tethering of vectors should be suitable for a wide array of single or multiple therapeutic gene strategies, and for further device-based gene delivery therapeutic strategies. Copyright (c) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据