3.8 Article

Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization

期刊

BRAIN CELL BIOLOGY
卷 35, 期 2-3, 页码 117-124

出版社

SPRINGER
DOI: 10.1007/s11068-007-9012-5

关键词

-

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

Phosphorylation of synapsin I by CaMKII has been reported to mobilize synaptic vesicles from the reserve pool. In the present study, the distributions of alpha-CaMKII and of synapsin I were compared in synaptic boutons of unstimulated and stimulated hippocampal neurons in culture by immunogold electron microscopy. CaMKII and synapsin I are located in separate domains in presynaptic terminals of unstimulated neurons. Label for alpha -CaMKII typically surrounds synaptic vesicle clusters and is absent from the inside of the cluster in control synapses. In contrast, intense labeling for synapsin I is found within the vesicle clusters. Following 2 minutes of depolarization in high K+, synaptic vesicles decluster and CaMKII label disperses and mingles with vesicles and synapsin I. These results indicate that, under resting conditions, CaMKII has limited access to the synapsin I in synaptic vesicle clusters. The peripheral distribution of CaMKII around vesicle clusters suggests that CaMKII-mediated declustering progresses from the periphery towards the center, with the depth of penetration into the synaptic vesicle cluster depending on the duration of CaMKII activation. Depolarization also promotes a significant increase in CaMKII immunolabel near the presynaptic active zone. Activity-induced redistribution of CaMKII leaves it in a position to facilitate phosphorylation of additional presynaptic proteins regulating neurotransmitter release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据