4.5 Article

Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30658

关键词

hydroxyapatite; scaffold; solid freeform fabrication; degradation; bone

向作者/读者索取更多资源

Degradation of three types of model hydroxyapatite (HA) scaffolds was studied after in vitro degradation in a sodium acetate buffer (pH 4). Degradation was evaluated using compression testing, scanning electron microscopy (SEM), inductively coupled plasma (ICP) analysis, and weight measurements. Scaffolds were fabricated with a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. Scaffolds had a macrostructure resembling a lattice of rods. Scaffolds contained either macropores (270 or 680 mu m in the x-y direction and 280 mu m in the z-direction) and micropores (1-30-mu m pores and pores < 1 mu m) or only macropores pores (270 mu m in the x-y direction and 280 mu m in the z-direction). A computer-aided design (CAD) program controlled the size and distribution of macropores; micropores were created by polymethylmethacrylate (PMMA) microsphere porogens (1-30-mu m pore diameter) and controlled sintering (pores < 1 mu m). Percent weight loss of the scaffolds and calcium and phosphorus ion concentrations in solution increased as the degradation period increased for all scaffold types. After degradation, compressive strength and compressive modulus decreased significantly for those scaffolds with microporosity. For scaffolds without microporosity, the changes in strength and modulus after degradation were not statistically significant. The compressive strength of scaffolds without microporosity was significantly greater than the scaffolds with microporosity. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据