4.8 Article

Strong regional biases in nucleotide substitution in the chicken genome

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 23, 期 6, 页码 1203-1216

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msk008

关键词

isochore; base composition; chicken; mutation; recombination

向作者/读者索取更多资源

Interspersed repeats have emerged as a valuable tool for studying neutral patterns of molecular evolution. Here we analyze variation in the rate and pattern of nucleotide substitution across all autosomes in the chicken genome by comparing the present-day CR1 repeat sequences with their ancestral copies and reconstructing nucleotide substitutions with a maximum likelihood model. The results shed light on the origin and evolution of large-scale heterogeneity in GC content found in the genomes of birds and mammals-the isochore structure. In contrast to mammals, where GC content is becoming homogenized, heterogeneity in GC content is being reinforced in the chicken genome. This is also supported by patterns of substitution inferred from alignments of introns in chicken, turkey, and quail. Analysis of individual substitution frequencies is consistent with the biased gene conversion (BGC) model of isochore evolution, and it is likely that patterns of evolution in the chicken genome closely resemble those in the ancestral amniote genome, when it is inferred that isochores originated. Microchromosomes and distal regions of macrochromosomes are found to have elevated substitution rates and a more GC-biased pattern of nucleotide substitution. This can largely be accounted for by a strong correlation between GC content and the rate and pattern of substitution. The results suggest that an interaction between increased mutability at CpG motifs and fixation biases due to BGC could explain increased levels of divergence in GC-rich regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据