4.6 Article

Conserved spin and orbital angular momentum Hall current in a two-dimensional electron system with Rashba and Dresselhaus spin-orbit coupling

期刊

PHYSICAL REVIEW B
卷 73, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.235309

关键词

-

向作者/读者索取更多资源

We study theoretically the spin and orbital angular momentum (OAM) Hall effect in a high mobility two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin and OAM torque corrections, respectively, to the spin and OAM currents. We find that when both bands are occupied, the spin Hall conductivity is still a constant (i.e., independent of the carrier density) which, however, has an opposite sign to the previous value. The spin Hall conductivity in general would not be cancelled by the OAM Hall conductivity. The OAM Hall conductivity is also independent of the carrier density but depends on the strength ratio of the Rashba to Dresselhaus spin-orbit coupling, suggesting that one can manipulate the total Hall current through tuning the Rashba coupling by a gate voltage. We note that in a pure Rashba system, though the spin Hall conductivity is exactly cancelled by the OAM Hall conductivity due to the angular momentum conservation, the spin Hall effect could still manifest itself as nonzero magnetization Hall current and finite magnetization at the sample edges because the magnetic dipole moment associated with the spin of an electron is twice as large as that of the OAM. We also evaluate the electric field-induced OAM and discuss the origin of the OAM Hall current. Finally, we find that the spin and OAM Hall conductivities are closely related to the Berry vector (or gauge) potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据