4.2 Article

Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light

期刊

JOURNAL OF BIOLOGICAL RHYTHMS
卷 21, 期 3, 页码 169-176

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0748730406288040

关键词

circadian; constant light; corticosterone; cry; kidney; per; SCN; ultradian

向作者/读者索取更多资源

In mammals, circadian rhythms in behavior and physiology are controlled by a central pacemaker, the SCN, and subordinated clocks throughout the body On the molecular level, these clocks are based on transcriptional/translational feedback loops involving a set of clock genes that regulate their own transcription. Among the components driving the mammalian circadian clock are the Period 1 and 2 (Per1 and Per2) and Cryptochrome 1 and 2 (Cry1 and Cry2) genes. In the present study, the authors characterize the behavioral and molecular rhythms of Per2/Cry1 double mutant mice under 3 different lighting conditions. In an LD cycle, the activity of these animals is masked by light, while in DD, the mutants lose circadian rhythmicity but exhibit strong ultrathan rhythms. In LL of higher intensity, circadian rhythms are restored on the behavioral level with a drastically shortened endogenous period. Furthermore, both in the SCN and in the periphery, clock gene rhythms are restored. Based on these observations and also on the fact that light-mediated induction of Per gene expression is preserved in these mutants, the authors propose a mechanism by which endogenous ultradian rhythms may relay timed light exposure to the SCN, leading to a reinitiation of self-sustained circadian rhythms in LL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据