4.6 Article

Abelian and non-Abelian geometric phases in adiabatic open quantum systems

期刊

PHYSICAL REVIEW A
卷 73, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.062101

关键词

-

向作者/读者索取更多资源

We introduce a self-consistent framework for the analysis of both Abelian and non-Abelian geometric phases associated with open quantum systems, undergoing cyclic adiabatic evolution. We derive a general expression for geometric phases, based on an adiabatic approximation developed within an inherently open-systems approach. This expression provides a natural generalization of the analogous one for closed quantum systems, and we prove that it satisfies all the properties one might expect of a good definition of a geometric phase, including gauge invariance. A striking consequence is the emergence of a finite time interval for the observation of geometric phases. The formalism is illustrated via the canonical example of a spin-1/2 particle in a time-dependent magnetic field. Remarkably, the geometric phase in this case is immune to dephasing and spontaneous emission in the renormalized Hamiltonian eigenstate basis. This result positively impacts holonomic quantum computing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据