4.5 Article Proceedings Paper

High-quality large-area MBE HgCdTe/Si

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 35, 期 6, 页码 1283-1286

出版社

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11664-006-0255-1

关键词

molecular-beam epitaxy (MBE); HgCdTe/Si; IRFPA; large-format

向作者/读者索取更多资源

HgCdTe offers significant advantages over other similar semiconductors, which has made it the most widely utilized variable-gap material in infrared (IR) focal plane array (FPA) technology. HgCdTe hybrid FPAs consisting of two-dimensional detector arrays that are hybridized to Si readout circuits (ROIC) are the dominant technology for second-generation infrared systems. However, one of the main limitations of the HgCdTe materials system has been the size of lattice-matched bulk CdZnTe substrates, used for epitaxially grown HgCdTe, which have been limited to 30 cm(2) in production. This size limitation does not adequately support the increasing demand for larger FPA formats which now require sizes up to 2048 X 2048, and only a single die can be printed per wafer. Heteroepitaxial Si-based substrates offer a cost-effective technology that can be scaled to large wafer sizes and further offer a thermal-expansion-matched hybrid structure that is suitable for large format FPAs. This paper presents data on molecular-beam epitaxy (MBE)-grown HgCdTe/Si wafers with much improved materials characteristics than previously reported. We will present data on 4- and 6-in diameter HgCdTe both with extremely uniform composition and extremely low defects. Large-diameter HgCdTe/Si with nearly perfect compositional uniformity and ultra low defect density is essential for meeting the demanding specifications of large format FPAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据