4.7 Article

Gemcitabine uptake in glioblastoma multiforme: potential as a radiosensitizer

期刊

ANNALS OF ONCOLOGY
卷 20, 期 1, 页码 182-187

出版社

OXFORD UNIV PRESS
DOI: 10.1093/annonc/mdn543

关键词

-

类别

向作者/读者索取更多资源

Glioblastoma multiforme (GBM), the most frequent malignant brain tumor, has a poor prognosis, but is relatively sensitive to radiation. Both gemcitabine and its metabolite difluorodeoxyuridine (dFdU) are potent radiosensitizers. The aim of this phase 0 study was to investigate whether gemcitabine passes the blood-tumor barrier, and is phosphorylated in the tumor by deoxycytidine kinase (dCK) to gemcitabine nucleotides in order to enable radiosensitization, and whether it is deaminated by deoxycytidine deaminase (dCDA) to dFdU. Gemcitabine was administered at 500 or 1000 mg/m(2) just before surgery to 10 GBM patients, who were biopsied after 1-4 h. Plasma gemcitabine and dFdU levels varied between 0.9 and 9.2 mu M and 24.9 and 72.6 mu M, respectively. Tumor gemcitabine and dFdU levels varied from 60 to 3580 pmol/g tissue and from 29 to 72 nmol/g tissue, respectively. The gene expression of dCK (beta-actin ratio) varied between 0.44 and 2.56. The dCK and dCDA activities varied from 1.06 to 2.32 nmol/h/mg protein and from 1.51 to 5.50 nmol/h/mg protein, respectively. These enzyme levels were sufficient to enable gemcitabine phosphorylation, leading to 130-3083 pmol gemcitabine nucleotides/g tissue. These data demonstrate for the first time that gemcitabine passes the blood-tumor barrier in GBM patients. In tumor samples, both gemcitabine and dFdU concentrations are high enough to enable radiosensitization, which warrants clinical studies using gemcitabine in combination with radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据