4.6 Article

Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope

期刊

LANGMUIR
卷 22, 期 12, 页码 5334-5340

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la053148a

关键词

-

向作者/读者索取更多资源

Nanometer-scale holes have been fabricated on the surfaces of the semiconducting transition metal dichalcogenides (TMDCs) molybdenum ditelluride (MoTe2) and molybdenum disulfide (MoS2) by applying voltage pulses from the tip of a scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV). It was found that the tip geometry (tip shape and sharpness) influences the formation and structure of the atomic-scale nanostructures. Threshold voltage ranges for the surface modification of MoTe2 (3.0 +/- 0.3 V) and MoS2 (3.4 +/- 0.3 V) were determined. Negative sample voltage pulses applied to a p-type MoTe2 surface produced much larger and deeper nanometer-scale holes when compared with those produced by positive voltage pulses. The existence of threshold voltages and the pulse polarity dependence of nanostructure fabrication suggests that an electric field evaporation mechanism is applicable. Support for this mechanism was obtained by nanostructuring metallic TMDC NbSe2, where both the produced features and the threshold voltages (3.0 +/- 0.3 V) were similar for both positive and negative voltage pulses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据