4.6 Article

Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 45, 期 12, 页码 4110-4116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie0600902

关键词

-

向作者/读者索取更多资源

Boron-doped TiO2 nanoparticles were prepared by the sol-gel method and characterized by XRD, TEM, XPS, FT-IR, and UV-vis spectroscopy. XRD results showed that the doping of boron ions could efficiently inhibit the grain growth and facilitate the anatase-to-rutile transformation prior to the formation of diboron trioxide phase. FT-IR and XPS results revealed that the doped boron was present as the form of B3+ in B-doped TiO2 samples, forming a possible chemical environment like Ti-O-B. The lattice parameters at different boron contents and calcination temperatures indicated that B3+ was likely to weave into the interstitial TiO2 structure. The photocatalytic activity of the B-doped TiO2 nanoparticles was evaluated by the photoregeneration of reduced nicotinamide adenine dinucleotide ( NADH). All B- doped TiO2 nanoparticles calcined at 500 degrees C showed higher photocatalytic activity than pure TiO2 sample in the photocatalytic reaction of NADH regeneration under UV light irradiation. When the molar ratio of B to Ti was 5%, the TiO2 nanoparticles could photocatalytically reproduce 94% NADH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据