4.5 Article

Development of a fitting model suitable for the isothermal titration calorimetric curve of DNA with cationic ligands

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 22, 页码 10919-10925

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp057554e

关键词

-

向作者/读者索取更多资源

A novel curve fitting model was developed for the isothermal titration calorimetry (ITC) of a cationic ligand binding to DNA. The ligand binding often generates a DNA conformational change from an elongated random coil into a compact collapsed form that is referred to as DNA condensation. The ligand binding can be classified into two regimes having different binding constants K-i, i.e., the binding to an elongated DNA chain with a binding constant K-1 and with K-2 that occurred during the conformational transition. The two-variable curve fitting models are usually bound by a strict regulation on the difference in the values of the binding constants K-1 > K-2. For the DNA condensation, however, the relationships for K-1 and K-2 are still unclear. The novel curve fitting model developed in this study takes into account this uncertainty on the relationship of the binding constants and is highly flexible for the two-variable binding constant system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据