4.6 Article

Self-phase-modulation in submicron silicon-on-insulator photonic wires

期刊

OPTICS EXPRESS
卷 14, 期 12, 页码 5524-5534

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.14.005524

关键词

-

类别

向作者/读者索取更多资源

We measure the transmission of ps-pulses through silicon-on-insulator submicron waveguides for excitation wavelengths between 1400 and 1650 nm and peak powers covering four orders of magnitude.Self-phase-modulation induced spectral broadening is found to be significant at coupled peak powers of even a few tens of mW. The nonlinear-index coefficient, extracted from the experimental data, is estimated as n(2) similar to 5(.)10(-18) m(2)/W at 1500 nm. The experimental results show good agreement with model calculations that take into account nonlinear phase shift, first- and second order dispersion, mode confinement, frequency dispersion of n2, and dynamics of two-photon-absorption-generated free carriers. Comparison with theory indicates that an observed twofold increase of spectral broadening between 1400 and 1650 nm can be assigned to the dispersion of n2 as well as first order-rather than second-order dispersion effects. The analysis of pulse broadening, spectral shift and transmission saturation allows estimating a power threshold for nonlinearity-induced signal impairment in nanophotonic devices. (c) 2006 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据