4.8 Article

Differential detection of dual traps improves the spatial resolution of optical tweezers

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0603342103

关键词

single molecule; subnanometer resolution; signal-to-noise ratio

向作者/读者索取更多资源

The drive toward more sensitive single-molecule manipulation techniques has led to the recent development of optical tweezers capable of resolving the motions of biological systems at the subranometer level, approaching the fundamental limit set by Brownian fluctuations. One successful approach has been the dual-trap optical tweezers, in which the system of study is held at both ends by microspheres in two separate optical traps. We present here a theoretical description of the Brownian limit on the spatial resolution of such systems and verify these predictions by direct measurement in a Brownian noise-limited dual-trap optical tweezers. We find that by detecting the positions of both trapped microspheres, correlations in their motions can be exploited to maximize the resolving power of the instrument. Remarkably, we show that the spatial resolution of dual optical traps with dual-trap detection is always superior to that of more traditional, single-trap designs, despite the added Brownian noise of the second trapped microsphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据