4.6 Article

Kernel-based distance metric learning for microarray data classification

期刊

BMC BIOINFORMATICS
卷 7, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-7-299

关键词

-

向作者/读者索取更多资源

Background: The most fundamental task using gene expression data in clinical oncology is to classify tissue samples according to their gene expression levels. Compared with traditional pattern classifications, gene expression-based data classification is typically characterized by high dimensionality and small sample size, which make the task quite challenging. Results: In this paper, we present a modified K-nearest-neighbor (KNN) scheme, which is based on learning an adaptive distance metric in the data space, for cancer classification using microarray data. The distance metric, derived from the procedure of a data-dependent kernel optimization, can substantially increase the class separability of the data and, consequently, lead to a significant improvement in the performance of the KNN classifier. Intensive experiments show that the performance of the proposed kernel-based KNN scheme is competitive to those of some sophisticated classifiers such as support vector machines (SVMs) and the uncorrelated linear discriminant analysis (ULDA) in classifying the gene expression data. Conclusion: A novel distance metric is developed and incorporated into the KNN scheme for cancer classification. This metric can substantially increase the class separability of the data in the feature space and, hence, lead to a significant improvement in the performance of the KNN classifier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据