4.8 Article

Electrostatic-gated transport in chemically modified glass nanopore electrodes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 23, 页码 7679-7686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja061357r

关键词

-

向作者/读者索取更多资源

Electrostatic-gated transport in chemically modified glass nanopore electrodes with orifice radii as small as 15 nm is reported. A single conical-shaped nanopore in glass, with a similar to 1 mu m radius Pt disk located at the pore base, is prepared by etching the exposed surface of a glass-sealed Pt nanodisk. The electrochemical response of the nanopore electrode corresponds to diffusion of redox-active species through the nanopore orifice to the Pt microdisk. Silanization of the exterior glass surface with Cl(Me)(2)Si(CH2)(3)CN and the interior pore surface with EtO(Me)(2)Si(CH2)(3)NH2 introduces pH-dependent ion selectivity at the pore orifice, a consequence of the electrostatic interactions between the redox ions and protonated surface amines. Nanopore electrodes with very small pore orifice radii (< similar to 50 nm) display anion permselectively at pH < 4, as demonstrated by electrochemical measurement of transport through the pore orifice. Ion selective transport vanishes at pH > 6 or when the pore radius is significantly larger than the Debye screening length, consistent with the observed ion selectivity resulting from electrostatic interactions. The ability to introduce different surface functionalities to the interior and exterior surfaces of glass nanopores is demonstrated using fluorescence microscopy to monitor the localized covalent attachment of 5-(and 6)- carboxytetramethylrhodamine succinimidyl ester to interior pore surfaces previously silanized with EtO(Me)(2)Si(CH2)(3)NH2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据