4.8 Article

Chemically controlled self-assembly of protein nanorings

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 23, 页码 7630-7638

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja060631e

关键词

-

向作者/读者索取更多资源

The exploitation of biological macromolecules, such as nucleic acids, for the fabrication of advanced materials is a promising area of research. Although a greater variety of structural and functional uses can be envisioned for protein-based materials, systematic approaches for their construction have yet to emerge. Consistent with theoretical models of polymer macrocyclization, we have demonstrated that, in the presence of dimeric methotrexate (bisMTX), wild-type Escherichia coli dihydrofolate reductase ( DHFR) molecules tethered together by a flexible peptide linker (ecDHFR(2))are capable of spontaneously forming highly stable cyclic structures with diameters ranging from 8 to 20 nm. The nanoring size is dependent on the length and composition of the peptide linker, on the affinity and conformational state of the dimerizer, and on induced protein-protein interactions. Delineation of these and other rules for the control of protein oligomer assembly by chemical induction provides an avenue to the future design of protein-based materials and nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据