4.6 Article

A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2206885

关键词

-

向作者/读者索取更多资源

Based on the nonequilibrium Green's function formalism, we have developed a three-dimensional (3D) simulation framework capable of handling electronic transport in nanoscale silicon devices within the effective mass and Hartree approximations. Using the deformation potential theory and the self-consistent Born approximation, we obtain the spatially local self-energy functions for the intravalley and intervalley phonon scattering mechanisms. To make the 3D simulation practicable, we reduce the computational complexity by using the mode space approach suitable for the device whose cross section is relatively uniform along the transport direction. We also obtain the expression for the phonon-limited low field mobility in the long channel limit from the linear response theory. As an application, we study the quantum transport of the silicon nanowire transistor whose channel length is 15 nm in the ballistic limit and in the presence of the electron-phonon interactions. We can observe various effects of the electron-phonon interactions such as the reduction of the drain current, broadening of the local density of states, and the energy relaxation of the electrons injected from the source. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据