4.5 Article

Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade

期刊

JOURNAL OF CELL SCIENCE
卷 119, 期 12, 页码 2592-2603

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02986

关键词

Drosophila; eGFP; endocytosis; G Protein; phototransduction; TRP channel

资金

  1. NEI NIH HHS [R01-EY 03529, R01 EY003529-26, R01 EY003529] Funding Source: Medline

向作者/读者索取更多资源

Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel translocates between the rhabdomere and the cell body in a light-dependent manner. This translocation modifies the ion channel composition of the signaling membrane and induces long-term adaptation. However, the molecular mechanism underlying TRPL translocation remains unclear. Here we report that eGFP-tagged TRPL expressed in the photoreceptor cells formed functional ion channels with properties of the native channels, whereas TRPL-eGFP translocation could be directly visualized in intact eyes. TRPL-eGFP failed to translocate to the cell body in flies carrying severe mutations in essential phototransduction proteins, including rhodopsin, G alpha q, phospholipase C beta and the TRP ion channel, or in proteins required for TRP function. Our data, furthermore, show that the activation of a small fraction of rhodopsin and of residual amounts of the Gq protein is sufficient to trigger TRPL-eGFP internalization. In addition, we found that endocytosis of TRPL-eGFP occurs independently of dynamin, whereas a mutation of the unconventional myosin III, NINAC, hinders complete translocation of TRPL-eGFP to the cell body. Altogether, this study revealed that activation of the phototransduction cascade is mandatory for TRPL internalization, suggesting a critical role for the light induced conductance increase and the ensuing Ca2+-influx in the translocation process. The critical role of Ca2+ influx was directly demonstrated when the light-induced TRPL-eGFP translocation was blocked by removing extracellular Ca2+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据