4.7 Article

Polyester scaffolds with bimodal pore size distribution for tissue engineering

期刊

MACROMOLECULAR BIOSCIENCE
卷 6, 期 6, 页码 425-434

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.200600003

关键词

biodegradable; bone; polyesters; scaffolds; tissue engineering

向作者/读者索取更多资源

This paper presents a method for the preparation of porous poly(L-lactide)/poly[(L-lactide)-co-glycolide] scaffolds for tissue engineering. Scaffolds were prepared by a mold pressing-salt leaching technique from structured microparticles. The total porosity was in the range 70-85%. The pore size distribution was bimodal. Large pores, susceptible for osteoblasts growth and proliferation had the dimensions 50-400 mu m. Small pores, dedicated to the diffusion of nutrients or/and metabolites of bone forming cells, as well as the products of hydrolysis of polyesters from the walls of the scaffold, had sizes in the range 2 nm-5 mu m. The scaffolds had good mechanical strength (compressive modulus equal to 41 MPa and a strength of 1.64 MPa for 74% porosity). Scaffolds were tested in vitro with human osteoblast-like cells (MG-63). It was found that the viability of cells seeded within the scaffolds obtained using the mold pressing-salt leaching technique from structured microparticles was better when compared to cells cultured in scaffolds obtained by traditional methods. After 34 d of culture, cells within the tested scaffolds were organized in a tissue-like structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据