4.7 Article

Effect of chemical structure on the volume-phase transition in neutral and weakly charged poly(N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2205364

关键词

-

向作者/读者索取更多资源

Neutral poly(N-isopropylacrylamide) (PIPAAm), poly(N,N-diethylacrylamide) (PDEAAm), and poly(N-isopropylmethacrylamide) (PIPMAm) hydrogels and their weakly charged counterparts prepared by copolymerizing with sodium methacrylate (x(MNa)=0,0.025,0.05) were studied using ultrasmall-angle x-ray scattering. The volume-phase transition in hydrogels was observed as an increase in the inhomogeneity correlation length of the networks. The change in inhomogeneity correlation length was abrupt in neutral PIPAAm and PIPMAm gels with increase in temperature but was continuous in neutral PDEAAm gels. Addition of ionic comonomer to the network backbone suppressed the volume-phase transition in poly(N-alkylacrylamide)s but not in PIPMAm. The observed differences in temperature-induced volume change of these three polymers in water cannot be rationalized based on their relative hydrophobicity and are instead explained by considering the hydrogen-bonding constraints on their thermal fluctuations. Both PIPAAm and PDEAAm undergo volume collapse since their thermal fluctuations are constrained by hydrogen bonding with water to an extent that beyond a critical temperature they seek entropic compensation. Although thermal fluctuations in both PIPAAm and PIPMAm are equally constrained, thermal energy of the latter can be relaxed via the rotation of alpha-methyl groups allowing it greater flexibility. Compared to N-alkylacrylamides, N-alkylmethacrylamide can thus sustain hydrogen bonding to relatively higher temperatures before seeking entropic compensation by undergoing volume collapse. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据