4.6 Article

A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 25, 页码 17156-17163

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M513812200

关键词

-

资金

  1. NIAMS NIH HHS [AR49410] Funding Source: Medline
  2. NIDDK NIH HHS [DK57501] Funding Source: Medline

向作者/读者索取更多资源

Genetic evidence from both humans and mice suggests that Wnt/beta-catenin and bone morphogenetic protein (BMP) signaling pathways are essential for bone marrow mesenchymal stem cells to differentiate into osteoblasts. Here we describe a mechanism through which BMPs antagonize Wnt signaling and retard bone marrow mesenchymal stem cell proliferation. Treatment with Wnt3a, but not BMP-2, stimulated Lef1-mediated transcriptional activity, whereas co-stimulation with both Wnt3a and BMP-2 markedly reduced Wnt3a-induced reporter activity. Immunoprecipitation assays in 293T cells transfected with individual Smads and Wnt pathway components revealed a specific interaction between Dvl-1 and Smad1 that was dependent on the presence of Wnt3a or BMP-2. Under unstimulated conditions, Dvl-1 and Smad1 are co-immunoprecipitated and form a complex through the linker region of Smad1. Wnt3a treatment transiently disrupted the Dvl-1/Smad1 interaction coincident with nuclear accumulation of beta-catenin. In contrast, when cells were exposed to both Wnt3a and BMP-2, there was an enhanced accumulation of the Dvl-1-Smad1 complex and a decreased nuclear accumulation of beta-catenin. Expression of a mutant Smad1 protein, which cannot be phosphorylated in response to BMP, eliminated the inhibitory effect of BMP on Wnt-induced beta-catenin accumulation and transcriptional activity. These results identify a potential mechanism whereby BMP-2 antagonizes Wnt signaling in osteoblast progenitors by promoting an interaction between Smad1 and Dvl-1 that restricts beta-catenin activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据