4.6 Article

Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 25, 页码 16927-16934

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M600896200

关键词

-

向作者/读者索取更多资源

Vitamin K-2 is a critical nutrient required for blood coagulation. It also plays a key role in bone homeostasis and is a clinically effective therapeutic agent for osteoporosis. We previously demonstrated that vitamin K2 is a transcriptional regulator of bone marker genes in osteoblastic cells and that it may potentiate bone formation by activating the steroid and xenobiotic receptor, SXR. To explore the SXR-mediated vitamin K2 signaling network in bone homeostasis, we identified genes up-regulated by both vitamin K-2 and the prototypical SXR ligand, rifampicin, in osteoblastic cells using oligonucleotide microarray analysis and quantitative reverse transcription-PCR. Fourteen genes were up-regulated by both ligands. Among these, tsukushi, matrilin-2, and CD14 antigen were shown to be primary SXR target genes. Moreover, collagen accumulation in osteoblastic MG63 cells was enhanced by vitamin K2 treatment. Gain- and loss-of-function analyses showed that the small leucine-rich proteoglycan, tsukushi, contributestovitamin K-2-mediated enhancement of collagen accumulation. Our results suggest a new function for vitamin K2 in bone formation as a transcriptional regulator of extracellular matrix-related genes, that are involved in the collagen assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据