4.1 Review

Chemical modifiers of unstable expanded simple sequence repeats: What goes up, could come down

出版社

ELSEVIER
DOI: 10.1016/j.mrfmmm.2006.01.011

关键词

somatic mutation; myotonic dystrophy; Huntington disease; chemical modifier; triplet repeat; DNA mismatch repair

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

A mounting number of inherited human disorders, including Huntington disease, myotonic dystrophy, fragile X syndrome, Friedreich ataxia and several spinocerebellar ataxias, have been associated with the expansion of unstable simple sequence DNA repeats. Despite a similar genetic basis, pathogenesis in these disorders is mediated by a variety of both loss and gain of function pathways. Thus, therapies targeted at downstream pathology are likely to be disease specific. Characteristically, disease-associated expanded alleles in these disorders are highly unstable in the germline and somatic cells, with a tendency towards further expansion. Whereas germline expansion accounts for the phenomenon of anticipation, tissue-specific, age-dependent somatic expansion may contribute towards the tissue-specificity and progressive nature of the symptoms. Thus, somatic expansion presents as a novel therapeutic target in these disorders. Suppression of somatic expansion should be therapeutically beneficial, whilst reductions in repeat length could be curative. It is well established that both cis- and trans-acting genetic modifiers play key roles in the control of repeat dynamics. Importantly, recent data have revealed that expanded CAG(.)CTG repeats are also sensitive to a variety of transacting chemical modifiers. These data provide an exciting proof of principle that drug induced suppression of somatic expansion might indeed be feasible. Moreover, as our understanding of the mechanism of expansion is refined more rational approaches to chemical intervention in the expansion pathway can be envisioned. For instance, the demonstration that expansion of CAG.CTG repeats is dependent on the Msh2, Msh3 and Pms2 genes, highlights components of the DNA mismatch repair pathway as therapeutic targets. In addition to potential therapeutic applications, the response of expanded simple repeats to genotoxic assault suggests such sequences could also have utility as bio-monitors of environmentally induced genetic damage in the soma. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据