4.7 Article

Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.04.054

关键词

thermal expansion; particle reinforced metal matrix composite; finite element modeling; Al/SiCp composite

向作者/读者索取更多资源

Thermal expansion behavior is an important physical property of metal matrix composites (MMCs). For extruded Al/SiCp composites, both the particle volume percent and the orientation relative to the extrusion direction have significant effects on the coefficient of thermal expansion (CTE) of a composite. In this study, the coefficient of thermal expansion of extruded, SiC particle reinforced 2080 Al composites were measured using a thermal mechanical analyzer (TMA). It was found that the anisotropic distribution of SiC particles determines the anisotropic thermal behavior of Al/SiCp composites. For the same SiC content, the CTE in the short transverse direction (normal to the extrusion axis) is higher than that in the transverse direction, with the longitudinal direction (parallel to the extrusion axis) having the lowest CTE. Finite element modeling (FEM), based on the actual microstructure of Al/SiCp composites, was employed to simulate the thermal behavior. The experimental results for the CTE of the composite correlated very well with those predicted by two-dimensional (2D) numerical models. The FEM results showed that orientation of SiC particles changes the internal stress in the composite, which yields anisotropic thermal behavior. A comparison was made between the experimental results and the FEM model, and these were related to several analytical models. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据