4.8 Article

The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602249103

关键词

cytoskeleton; DASH; disassembly; mitosis; motility

资金

  1. NIGMS NIH HHS [R01 GM079373, R01 GM040506] Funding Source: Medline

向作者/读者索取更多资源

Kinetochores remain attached to microtubule (MT) tips during mitosis even as the tips assemble and disassemble under their grip, allowing filament dynamics to produce force and move chromosomes. The specific proteins that mediate tip attachment are uncertain, and the mechanism of MT-dependent force production is unknown. Recent work suggests that the Dam1 complex, an essential component of kinetochores in yeast, may contribute directly to kinetochore-MT attachment and force production, perhaps by forming a sliding ring encircling the MT. To test these hypotheses, we developed an in vitro motility assay where beads coated with pure recombinant Dam1 complex were bound to the tips of individual dynamic MTs. The Dam1-coated beads remained tip-bound and underwent assembly- and disassembly-driven movement over approximate to 3 mu m, comparable to chromosome displacements in vivo. Dam1-based attachments to assembling tips were robust, supporting 0.5-3 pN of tension applied with a feedback-controlled optical trap as the MTs lengthened approximate to 1 mu m. The attachments also harnessed energy from MT disassembly to generate movement against tension. Reversing the direction of force (i.e., switching to compressive force) caused the attachments to disengage the tip and slide over the filament, but sliding was blocked by areas where the MT was anchored to a coverslip, consistent with a coupling structure encircling the filament. Our findings demonstrate how the Dam1 complex may contribute directly to MT-driven chromosome movement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据