4.7 Article

Temperature affects stoichiometry and biochemical composition of Escherichia coli

期刊

MICROBIAL ECOLOGY
卷 52, 期 1, 页码 26-33

出版社

SPRINGER
DOI: 10.1007/s00248-006-9040-1

关键词

-

向作者/读者索取更多资源

Temperature is a master variable controlling biochemical processes in organisms, and its effects are manifested on many organizational levels in organisms and ecosystems. We examined the effects of temperature on the biochemical composition and stoichiometry of a model heterotrophic bacterium, Escherichia coli K-12, held at constant growth rate in chemostats. Increasing temperature led to increased cellular organic carbon (C) and organic nitrogen (N) with decreased phosphorus (P) content, leading to increased C/P and N/P biomass ratios. P content was related to cellular RNA, which is P-rich (9-10% by weight) and nonnucleic acid P (presumably composed of mostly phospholipids, intracellular phosphate, and polyphosphate). These results indicate that E. coli allocates an increased proportion of its P cell quota toward assembly (ribosomes) at low temperatures and an increasing proportion toward resource acquisition machinery (membranes) at higher temperatures. If these results are relevant to the behavior of prokaryotic heterotrophs in natural settings (the gut, soils, lakes, oceans, etc.), it suggests greater nutrient regeneration and less microbial nutrient retention as temperatures increase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据