4.7 Article

The three maize sucrose synthase Isoforms differ in distribution, localization, and phosphorylation

期刊

PLANT AND CELL PHYSIOLOGY
卷 47, 期 7, 页码 959-971

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcj068

关键词

cellular localization; isoform-specific antibodies; membrane association; oligomerization; sucrose synthase; Zea mays

向作者/读者索取更多资源

Although sucrose synthase (SUS) is widely appreciated for its role in plant metabolism and growth, very little is known about the contribution of each of the SUS isoforms to these processes. Using isoform-specific antibodies, we evaluated the three known isoforms individually at the protein level. SUS1 and SUS-SH1 proteins have been studied previously; however, SUS2 (previously known as SUS3) has only been studied at the transcript level. Using SUS2 isoform-specific antibodies, we determined that this isoform is present in several maize tissues. The intracellular localization of all SUS isoforms was studied by cellular fractionation of leaves and developing kernels. Interestingly, SUS1 and SUS-SH1 were associated with membranes while SUS2 was not. The lack of membrane-associated SUS2 indicates that it might have a unique role in cytoplasmic sucrose metabolism. Using co-immunoprecipitation with kernel extracts, it was also established that SUS2 exists predominantly as a hetero-oligomer with SUS1, while SUS-SH1 forms only homooligomers. Using sequence-specific and phospho-specific antibodies, we haste established for the first time that SUS-SH1 is phosphorylated in vivo at the Ser10 site in kernels, similar to the SUS1 Ser15 site. In midveins, additional evidence suggests that SUS can be phosphorylated at a novel C-terminal threonine site. Together, these results show that the isoforms of SUS are important in both cytosolic and membrane-associated sucrose degradation, but that their unique attributes most probably impart isoform-specific functional roles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据