4.4 Article

Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials

期刊

WOUND REPAIR AND REGENERATION
卷 14, 期 4, 页码 484-491

出版社

WILEY
DOI: 10.1111/j.1743-6109.2006.00138.x

关键词

-

资金

  1. NIDDK NIH HHS [DK 59221] Funding Source: Medline

向作者/读者索取更多资源

Percutaneous devices play an essential role in medicine; however, they are often associated with a significant risk of infection. One approach to circumvent infection would be to heal the wound around the devices by promoting skin cell attachment. We used two in vitro assay models to evaluate cutaneous response to poly(2-hydoxyethyl methacrylate) (poly(HEMA)). One approach was to use a cell adhesion assay to test the effects of surface modification of poly(HEMA), and the second used an organ culture system of newborn foreskin biopsies implanted with porous poly(HEMA) rods (20 mu m pores) to evaluate the skin/poly(HEMA) interface. Surface modification of poly(HEMA) using 1,1'-carbonyldiimidazole (CDI) enhanced keratinocyte, fibroblast, and endothelial cell adhesion. Keratinocytes in the organ culture model not only remained functionally and structurally viable as observed by immunohistochemistry and electron microscopy, but migrated into the pores of CDI-modified poly(HEMA) rods. No biointegration was seen in the non-CDI-modified poly(HEMA). Laminin 5 immunostaining was seen along the poly(HEMA)/skin interface in a pattern resembling the junctional epithelium of the tooth, the unique natural interface between the skin and tooth that serves as a barrier to bacteria. In vitro systematic evaluation of biomaterials for use in animal implant studies is both cost effective and time efficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据