4.3 Article

Hydration of alkali-activated slag: comparison with ordinary Portland cement

期刊

ADVANCES IN CEMENT RESEARCH
卷 18, 期 3, 页码 119-128

出版社

ICE PUBLISHING
DOI: 10.1680/adcr.2006.18.3.119

关键词

-

向作者/读者索取更多资源

A multi-method approach was used for the investigation and comparison of alkali-activated slag binders (AAS), pure slag and ordinary Portland cement (OPC). X-ray fluorescence, X-ray powder diffraction, granulometry, calorimetry, thermo-gravimetric analysis and environmental scanning electron microscope investigations of the microstructure with energy dispersive X-ray analyses were used to characterise the cements and their hydrate phases. In addition, the chemical composition of the pore solution, including the different sulphur-containing ions, was analysed. The precipitation mechanisms during binder hydration in the AAS and OPC systems exhibit significant differences: in AAS the formation of the 'outer product' C-S-H is much faster than in OPC. The high Si concentrations in the pore solution during the early hydration of AAS are related to the fast dissolution of Na-metasilicate. The fast reaction of Na is an important factor for the voluminous precipitation of C-S-H within the interstitial space already during the first 24 h. In addition to the Na-metasilicate component, the high fineness of the slag represents a further important factor for the fast hydration of AAS. The small slag particles (<2 mu m) are completely dissolved or hydrated within the first 24 h, whereas hydration of the larger particles is much slower. The fast formation of a gel-like matrix in AAS is the product of a fast 'through solution' precipitation, which contrasts with the slower dissolution-precipitation mechanism of a 'topotactic' growth of C-S-H in OPC. The chemical and mineralogical characterisation of solid and liquid phases and their changes with time are the basis for thermodynamic modelling of the corresponding hydration process, which is presented in a second paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据