4.5 Article

Understanding the effects of model uncertainty in robust design with computer experiments

期刊

JOURNAL OF MECHANICAL DESIGN
卷 128, 期 4, 页码 945-958

出版社

ASME
DOI: 10.1115/1.2204974

关键词

model uncertainty; interpolation uncertainty; metamodel; robust design; Bayesian prediction interval; computer experiments

向作者/读者索取更多资源

The use of computer experiments and surrogate approximations (metamodels) introduces a source of uncertainty in simulation-based design that we term model interpolation uncertainty. Most existing approaches for treating interpolation uncertainty in computer experiments have been developed for deterministic optimization and are not applicable to design under uncertainty in which randomness is present in noise and/or design variables. Because the random noise and/or design variables are also inputs to the metamodel, the effects of metamodel interpolation uncertainty are not nearly as transparent as in deterministic optimization. In this work, a methodology is developed within a Bayesian framework for quantifying the impact of interpolation uncertainty on the robust design objective, under consideration of uncertain noise variables. By viewing the true response surface as a realization of a random process, as is common in kriging and other Bayesian analyses of computer experiments, we derive a closed-form analytical expression for a Bayesian prediction interval on the robust design objective function. This provides a simple, intuitively appealing tool for distinguishing the best design alternative and conducting more efficient computer experiments. We illustrate the proposed methodology with two robust design examples-a simple container design and an automotive engine piston design with more nonlinear response behavior and mixed continuous-discrete design variables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据