4.5 Article

Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30718

关键词

regenerative medicine; bladder; tissue engineering; supramolecular; self-assembly

资金

  1. NIBIB NIH HHS [R01 EB003806-01] Funding Source: Medline
  2. NIDCR NIH HHS [DE015920-01] Funding Source: Medline
  3. NIDDK NIH HHS [T32 DK062716-02] Funding Source: Medline

向作者/读者索取更多资源

An important challenge in regenerative medicine is the design of suitable bioactive scaffold materials that can act as artificial extracellular matrices. We reported previously on a family of peptide-amphiphile (PA) molecules that self-assemble into high-aspect ratio nanofibers under physiological conditions, and can display bioactive peptide epitopes along each nanofiber's periphery. One type of PA displays its epitope at a branched site using a lysine dendron, a molecular feature that improves epitope availability on the nanofiber surface. In this work, we describe the application of these branched PA (b-PA) systems as self-assembling coatings for fiber-bonded poly(glycolic acid) scaffolds. b-PAs bearing variations of the RGDS adhesion epitope from fibronectin were shown by elemental analysis to coat repeatably onto fiber scaffolds. The retention of supramolecular organization after coating on the scaffold was demonstrated through spectroscopic identification of P-sheet structures and the close association of hydrophobic tails in a model pyrene-containing PA system. Primary human bladder smooth muscle cells demonstrated greater initial adhesion to b-PA-functionalized scaffolds than to bare scaffolds or to those coated with linear PAs. This strategy of molecular design and coating may have potential application in bladder tissue regeneration. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据