4.6 Article

RGAD-tethered silk substrate stimulates the differentiation of human tendon cells

期刊

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
卷 -, 期 448, 页码 234-239

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.blo.0000205879.50834.fe

关键词

-

资金

  1. NIDCR NIH HHS [DE13405] Funding Source: Medline

向作者/读者索取更多资源

Tendon reconstruction surgery often requires healing of the tendon to bone. The development of a more rapid and strong interaction at the tendon to bone interface would be invaluable to patients having orthopaedic surgery. Therefore, our rationale was to modify sutures so that they would be anabolic for tendon to bone healing. It has been shown that silk stimulates bone formation in osteoblast cultures. In the current study, we tested the ability of silk and silk-RGD (arginine-glycine-aspartic acid) to stimulate human tenocyte adhesion, proliferation, and differentiation. A 1.3-fold increase in tenocyte adhesion was found on silk-RGD compared with tissue culture plastic. By 72 hours, proliferation had increased on all substrates but was particularly enhanced on silk-RGD compared with the control. At 6 weeks, Northern blot analysis of decorin and Type I collagen mRNA levels showed a 2-3-fold increase in message levels on silk-RGD and silk compared with tissue culture plastic. The data suggest cultured human tenocytes adhere, proliferate, and differentiate on silk and silk-RGD substrates. A suture material, such as silk, decorated with RGD, may have the potential to facilitate tendon-bone healing with widespread applications in tendon reconstruction surgery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据