4.7 Article

Jet-dominated advective systems:: radio and X-ray luminosity dependence on the accretion rate

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2006.10383.x

关键词

accretion, accretion discs; black hole physics; ISM : jets and outflows; X-rays : binaries

资金

  1. Science and Technology Facilities Council [PP/D001013/1] Funding Source: researchfish
  2. STFC [PP/D001013/1] Funding Source: UKRI

向作者/读者索取更多资源

We present a novel method to measure the accretion rate of radio emitting X-ray binaries (XRBs) and active galactic nuclei (AGN) independently of the X-ray luminosity. The radio emission of the jet is used as a tracer for the accretion rate and is normalized using sources of known accretion rates: island state neutron stars (NSs) and efficiently radiating black holes (BHs) close to a state transition. We show that the radio power in BHs and NSs is comparable for a given mass accretion rate and verify empirically the assumed analytic scaling of the radio luminosity with accretion rate (L-Rad proportional to M-1.4). As our accretion measure is independent of the X-ray luminosities, we can search for radiatively inefficient accretion in BHs by comparing the X-ray luminosities with the accretion rate in XRBs and AGN. While the X-ray luminosity of efficiently radiating objects scales linearly with accretion rate, the scaling of hard state BHs is quadratical, in agreement with theoretical models. We show that the turnover from the inefficient quadratic scaling to the linear scaling has to occur at accretion rates of 1-10 per cent Eddington both in XRBs and AGN. The comparison of both accretion states supports the idea that in a BH in the hard state some accretion power is advected into the BH while the jet power exceeds the X-ray luminosity: these are therefore jet-dominated advective systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据