4.6 Article

Multiplet effects in the electronic structure of light rare-earth metals

期刊

PHYSICAL REVIEW B
卷 74, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.045114

关键词

-

向作者/读者索取更多资源

The excited-state properties of the light rare-earth elemental metals praseodymium, neodymium, and samarium are studied within the Hubbard-I formalism. This method describes the multiplets of the rare-earth f shell by an exact diagonalization of the two-body part of the Hamiltonian. Subsequently, the rare-earth ion is embedded in the solid environment by incorporation of the atomic self-energy into a solid Green's function, which is calculated using the local density approximation to density functional theory. After describing the method briefly, a systematic comparison with available photoemission experiments is made, and it is found that all main structures of the experimental spectra are reproduced by the approach, with the exception of the features immediately below the Fermi level which are interpreted as a mark of a mechanism different from an atomiclike multiplet transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据