4.3 Article

Computational mutagenesis studies of protein structure-function correlations

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/prot.20968

关键词

protein structure-function correlation; statistical geometry; computational mutagenesis; HIV-1 protease; HIV-1 reverse transcriptase; T4 lysozyme

资金

  1. NCRR NIH HHS [P41 RR-01081] Funding Source: Medline

向作者/读者索取更多资源

Topological scores, measures of sequence-structure compatibility, are calculated for all 1,881 single point mutants of the human immunodeficiency virus (HIV)-1 protease using a four-body statistical potential function based on Delaunay tessellation of protein structure. Comparison of the mutant topological score data with experimental data from alanine scan studies specifically on the dimer interface residues supports previous findings that 1) L97 and F99 contribute greatly to the Gibbs energy of HIV-1 protease dimerization, 2) Q2 and T4 contribute the least toward the Gibbs energy, and 3) C-terminal residues are more sensitive to mutations than those at the N-terminus. For a more comprehensive treatment of the relationship between protease structure and function, mutant topological scores are compared with the activity levels for a set of 536 experimentally synthesized protease mutants, and a significant correlation is observed. Finally, this structure-function correlation is similarly identified by examining model systems consisting of 2,015 single point mutants of bacteriophage T4 lysozyme as well as 366 single point mutants of HIV-1 reverse transcriptase and is hypothesized to be a property generally applicable to all proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据