4.8 Article

A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity

期刊

PLANT CELL
卷 18, 期 7, 页码 1750-1765

出版社

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.105.039677

关键词

-

向作者/读者索取更多资源

The expression of systemic acquired resistance (SAR) in plants involves the upregulation of many Pathogenesis-Related ( PR) genes, which work in concert to confer resistance to a broad spectrum of pathogens. Because SAR is a costly process, SAR-associated transcription must be tightly regulated. Arabidopsis thaliana SNI1 (for Suppressor of NPR1, Inducible) is a negative regulator of SAR required to dampen the basal expression of PR genes. Whole genome transcriptional profiling showed that in the sni1 mutant, Nonexpresser of PR genes (NPR1)-dependent benzothiadiazole S-methylester-responsive genes were specifically derepressed. Interestingly, SNI1 also repressed transcription when expressed in yeast, suggesting that it functions as an active transcriptional repressor through a highly conserved mechanism. Chromatin immunoprecipitation indicated that histone modification may be involved in SNI1-mediated repression. Sequence comparison with orthologs in other plant species and a saturating NAAIRS-scanning mutagenesis of SNI1 identified regions in SNI1 that are required for its activity. The structural similarity of SNI1 to Armadillo repeat proteins implies that SNI1 may form a scaffold for interaction with proteins that modulate transcription.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据