4.6 Article

Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars

期刊

ASTRONOMY & ASTROPHYSICS
卷 453, 期 3, 页码 949-U30

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20054476

关键词

ISM : abundances; ISM : molecules; stars : formation

向作者/读者索取更多资源

Context. Despite the low cosmic abundance of deuterium (D/H similar to 10(-5)), high degrees of deuterium fractionation in molecules are observed in star-forming regions with enhancements that can reach 13 orders of magnitude, a level that current models have difficulty accounting for. Aims. Multi-isotopologue observations are a very powerful constraint for chemical models. The aim of our observations is to understand the processes that form the observed high abundances of methanol and formaldehyde in low-mass protostellar envelopes (gas-phase processes? chemistry on the grain surfaces?), as well as to better constrain the chemical models. Methods. With the IRAM 30 m single-dish telescope, we observed deuterated formaldehyde (HDCO and D2CO) and methanol (CH2DOH, CH3OD, and CHD2OH) towards a sample of seven low-mass class 0 protostars. Using population diagrams, we then derived the fractionation ratios of these species (abundance ratio between the deuterated molecule and its main isotopologue) and compared them to the predictions of grain chemistry models. Results. These protostars show a similar level of deuteration as in IRAS 16293-2422, where doubly-deuterated methanol - and even triply-deuterated methanol - were first detected. Our observations point to the formation of methanol on the grain surfaces, while formaldehyde formation cannot be fully pinned down. While none of the scenarii can be excluded (gas-phase or grain chemistry formation), they both seem to require abstraction reactions to reproduce the observed fractionations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据